Non-parametric TestsLoading...
Mann-Whitney U-testComparing two independent conditionsNote: Input values must be separated by tabs. Copy and paste from Excel/Numbers.
Basic statisticsRanksBox plots with individual data pointsTest resultR session info Wilcoxon signed-rank testComparing two related conditionsNote: Input values must be separated by tabs. Copy and paste from Excel/Numbers.
Basic statisticsRanksBox plots with individual data pointsTest resultR session info Kruskal-Wallis testDifferences between several independent groupsNote: Input values must be separated by tabs. Copy and paste from Excel/Numbers.
Basic statisticsRanksBox plots with individual data pointsTest resultR session info Friedman testDifferences between several related groupsNote: Input values must be separated by tabs. Copy and paste from Excel/Numbers.
Basic statisticsRanksBox plots with individual data pointsTest resultR session info
Note
This web application is developed with Shiny. List of Packages Used library(shiny)
library(shinyAce)
library(psych)
library(beeswarm)
Code Source code for this application is based on "The handbook of Research in Foreign Language Learning and Teaching" (Takeuchi & Mizumoto, 2012). The code for this web application is available at GitHub.
If you want to run this code on your computer (in a local R session), run the code below:
Citation in Publications Mizumoto, A. (2015). Langtest (Version 1.0) [Web application]. Retrieved from http://langtest.jp Article Mizumoto, A., & Plonsky, L. (2015). R as a lingua franca: Advantages of using R for quantitative research in applied linguistics. Applied Linguistics, Advance online publication. doi:10.1093/applin/amv025 Recommended To learn more about R, I suggest this excellent and free e-book (pdf), A Guide to Doing Statistics in Second Language Research Using R, written by Dr. Jenifer Larson-Hall. Also, if you are a cool Mac user and want to use R with GUI, MacR is defenitely the way to go! Author
Atsushi MIZUMOTO,
Ph.D.
|
library(shiny)
library(shinyAce)
library(psych)
library(beeswarm)
shinyServer(function(input, output) {
#-----------------------------------------------------------------
# Mann-Whitney U-test (Comparing two independent conditions)
#-----------------------------------------------------------------
# Basic statistics
MWU.bs <- reactive({
dat <- read.csv(text=input$text1, sep="", na.strings=c("","NA","."))
describeBy(dat[,2], dat[,1])
})
output$MWU.bs.out <- renderPrint({
MWU.bs()
})
# Rank
MWU.ranking <- reactive({
dat <- read.csv(text=input$text1, sep="", na.strings=c("","NA","."))
ranked <- rank(dat[,2])
data <- data.frame(dat[,1], ranked)
n <- round(tapply(data[,2], data[,1], length),2)
m <- round(tapply(data[,2], data[,1], mean),2)
t <- round(tapply(data[,2], data[,1], sum),2)
ranks <- data.frame(n, m, t)
colnames(ranks) <- c("n","Rank Mean","Rank Sum")
print(ranks)
})
output$MWU.ranking.out <- renderPrint({
MWU.ranking()
})
# Box plot
MWU.boxPlot <- function(){
dat <- read.csv(text=input$text1, sep="", na.strings=c("","NA","."))
boxplot(dat[,2] ~ dat[,1], las=1)
beeswarm(dat[,2] ~ dat[,1], col = 4, pch = 16, vert = TRUE, add = TRUE)
}
output$MWU.boxPlot <- renderPlot({
print(MWU.boxPlot())
})
# Mann-Whitney U-test
MWU.test <- reactive({
dat <- read.csv(text=input$text1, sep="", na.strings=c("","NA","."))
dat2 <- split(dat, dat[,1])
x <- dat2[[1]][,2]
y <- dat2[[2]][,2]
max.len = max(length(x), length(y))
x <- c(x, rep(NA, max.len - length(x)))
y <- c(y, rep(NA, max.len - length(y)))
U.test <- function(x, y, correct = TRUE)
{
x <- x[!is.na(x)]
y <- y[!is.na(y)]
n1 <- length(x)
n2 <- length(y)
n <- n1 + n2
xy <- c(x, y)
r <- rank(xy)
U1 <- n1*n2+n1*(n1+1)/2-sum(r[1:n1])
tie <- table(r)
U <- min(U1, n1*n2-U1) # U
V <- n1*n2*(n^3-n-sum(tie^3-tie))/12/(n^2-n) # variance ties considered
E <- n1*n2/2 # Expected
z <- ((U-E)-ifelse(correct, 0.5, 0))/sqrt(V) # z-value
EffectSize.r <- abs(z)/sqrt(n)
ESrCI <- r.con(EffectSize.r, n, p =.95, twotailed=TRUE)
P <- pnorm(abs(z), lower.tail=FALSE)*2
cat(" Mann-Whitney U-test", "\n",
"\n",
"U =", U, ",", "E(U) =", E, ",", "V(U) =", V, "\n",
"z-value =", round(z, 3), "\n",
"p-value =", P, "\n", "\n",
"Effect size r [95% CI]=", round(EffectSize.r, 3), "[", round(ESrCI, 3), "]", "\n"
)
}
U.test(x, y, correct = FALSE)
})
output$MWU.test.out <- renderPrint({
MWU.test()
})
# Info
MWU.info <- reactive({
info1 <- paste("This analysis was conducted with ", strsplit(R.version$version.string, " \\(")[[1]][1], ".", sep = "")
info2 <- paste("It was executed on ", date(), ".", sep = "")
cat(sprintf(info1), "\n")
cat(sprintf(info2), "\n")
})
output$MWU.info.out <- renderPrint({
MWU.info()
})
#-----------------------------------------------------------------
# Wilcoxon signed-rank test (Comparing two related conditions)
#-----------------------------------------------------------------
# Basic statistics
WSR.bs <- reactive({
dat <- read.csv(text=input$text2, sep="", na.strings=c("","NA","."))
describe(dat)
})
output$WSR.bs.out <- renderPrint({
WSR.bs()
})
# Rank
WSR.ranking <- reactive({
dat <- read.csv(text=input$text2, sep="", na.strings=c("","NA","."))
dat$diff <- dat[,2] - dat[,1]
dat$sign <- ifelse(dat$diff < 0, "Negative", ifelse((dat$diff > 0), "Positive", "Tie"))
newdata <- subset(dat, dat$sign != "Tie") # Except Tie
newdata$rank <- rank(abs(newdata$diff))
n <- tapply(dat[,1], dat$sign, length)
m <- tapply(newdata$rank, newdata$sign, mean)
t <- tapply(newdata$rank, newdata$sign, sum)
list(n = n, "Rank Mean" = round(m, 2), "Rank Sum" = round(t, 2))
})
output$WSR.ranking.out <- renderPrint({
WSR.ranking()
})
# Box plot
WSR.boxPlot <- function(){
dat <- read.csv(text=input$text2, sep="", na.strings=c("","NA","."))
boxplot(dat, las=1)
beeswarm(dat, col = 4, pch = 16, vert = TRUE, add = TRUE)
}
output$WSR.boxPlot <- renderPlot({
print(WSR.boxPlot())
})
# Wilcoxon signed-rank test
WSR.test <- reactive({
dat <- read.csv(text=input$text2, sep="", na.strings=c("","NA","."))
x <- dat[,1]
x <- x[!is.na(x)]
y <- dat[,2]
y <- y[!is.na(y)]
options(warn=-1) # Suppress a warning message
result <- wilcox.test(x, y, paired=TRUE, correct=FALSE)
pval <- result$p.value
z <- qnorm(1-(pval/2))
r1 <- z/sqrt(length(x)*2)
esR.CI1 <- r.con(r1, length(x*2), p =.95, twotailed=TRUE)
#r2 <- z/sqrt(length(x)-sum((y-x==0)))
#esR.CI2 <- round(r.con(r2, length(x)-sum((y-x==0)), p =.95, twotailed=TRUE), 3)
print(result)
cat(" z-value =", round(z, 3), "\n",
"\n",
"Effect size r [95% CI] =", round(r1, 3), "[", round(esR.CI1, 3), "]", "\n"
)
#"Effect size r (without considering ties) [95% CI]=", round(r2, 3), "[", esR.CI1, "]", "\n")
})
output$WSR.test.out <- renderPrint({
WSR.test()
})
# Info
WSR.info <- reactive({
info1 <- paste("This analysis was conducted with ", strsplit(R.version$version.string, " \\(")[[1]][1], ".", sep = "")
info2 <- paste("It was executed on ", date(), ".", sep = "")
cat(sprintf(info1), "\n")
cat(sprintf(info2), "\n")
})
output$WSR.info.out <- renderPrint({
WSR.info()
})
#-----------------------------------------------------------------
# Kruskal-Wallis test (Differences between several independent groups)
#-----------------------------------------------------------------
# Basic statistics
KW.bs <- reactive({
dat <- read.csv(text=input$text3, sep="", na.strings=c("","NA","."))
describeBy(dat[,2], dat[,1])
})
output$KW.bs.out <- renderPrint({
KW.bs()
})
# Rank
KW.ranking <- reactive({
dat <- read.csv(text=input$text3, sep="", na.strings=c("","NA","."))
ranked <- rank(dat[,2])
data <- data.frame(dat[,1], ranked)
n <- round(tapply(data[,2], data[,1], length),2)
m <- round(tapply(data[,2], data[,1], mean),2)
t <- round(tapply(data[,2], data[,1], sum),2)
ranks <- data.frame(n, m, t)
colnames(ranks) <- c("n","Rank Mean","Rank Sum")
print(ranks)
})
output$KW.ranking.out <- renderPrint({
KW.ranking()
})
# Box plot
KW.boxPlot <- function(){
dat <- read.csv(text=input$text3, sep="", na.strings=c("","NA","."))
boxplot(dat[,2] ~ dat[,1], las=1)
beeswarm(dat[,2] ~ dat[,1], col = 4, pch = 16, vert = TRUE, add = TRUE)
}
output$KW.boxPlot <- renderPlot({
print(KW.boxPlot())
})
# Kruskal-Wallis test
KW.test <- reactive({
dat <- read.csv(text=input$text3, sep="", na.strings=c("","NA","."))
result <- kruskal.test(dat[,2] ~ dat[,1])
print(result)
z <- qnorm(1 - (result$p.value/2)) # p to z
esR <- abs(z)/sqrt(nrow(dat)) # z to r
# 95%CI of r
esR.CI <- r.con(esR, nrow(dat), p =.95, twotailed=TRUE)
cat("Effect size r [95% CI] =", round(esR, 3), "[", round(esR.CI, 3), "]", "\n")
cat(" *Converted from p-value (p -> z -> r)", "\n", "\n", "\n")
#eta2 <- result$statistic[[1]]/(length(dat[,1])-1)
#cat("Effect size (eta-squared) =", sprintf("%.3f",round(eta2,4)), "\n")
#cat("*Kruskal-Wallis chi-squared / (sample size - 1)", "\n", "\n")
# pair-wise comparisons
cat("=============================================================", "\n")
cat("\n", "Pairwise comparisons (Test statistics and effect sizes)", "\n", "\n")
cat("=============================================================", "\n", "\n")
U.test <- function(x, y, correct = TRUE) # this is used in "pairWiseU"
{
x <- x[!is.na(x)]
y <- y[!is.na(y)]
n1 <- length(x)
n2 <- length(y)
n <- n1+n2
xy <- c(x, y)
r <- rank(xy)
U1 <- n1*n2+n1*(n1+1)/2-sum(r[1:n1])
tie <- table(r)
U <- min(U1, n1*n2-U1) # U
V <- n1*n2*(n^3-n-sum(tie^3-tie))/12/(n^2-n) # variance ties considered
E <- n1*n2/2 # Expected
z <- round(((U-E)-ifelse(correct, 0.5, 0))/sqrt(V),3) # z-value
EffectSize.r <- round(abs(z)/sqrt(n),3)
P <- pnorm(abs(z), lower.tail=FALSE)*2
return(structure(list(statistic=c(U=U, "E(U)"=E, "V(U)"=V, "Z-value"=z), p.value=P), class="htest"))
}
pairWiseU <- function(x,y) {
uniqY <- unique(y)
xx <- data.frame(x,y)
yy <- unstack(xx)
for (i in 1:length(uniqY)) {
for (j in 1:length(uniqY)) {
if (i >= j) {
next
} else {
x <- data.frame(yy[i])
y <- data.frame(yy[j])
n1 <- nrow(x)
n2 <- nrow(y)
n <- n1 + n2
resultU <- U.test(x, y, correct=FALSE)
r <- abs(resultU[[1]][[4]])/sqrt(n)
esR.CI <- r.con(r, n, p =.95, twotailed=TRUE)
cat("Comparisons", colnames(x), "-", colnames(y), ":", "\n",
"Mann-Whitney's U:",sprintf("%.3f",round(resultU[[1]][1],4)),"\n",
"z-value:",sprintf("%.3f",round(resultU[[1]][4],4)), "\n",
#p-value (two-tailed without adjustment):",substr(sprintf("%.3f",round(resultU[[2]],4)),2,5), "\n",
"Effect size (r) [95% CI]=", sprintf("%.3f",r), "[", round(esR.CI, 3), "]", "\n",
"\n"
)
}
}
}
}
pairWiseU(dat[,2], dat[,1])
cat("\n")
cat("=============================================================", "\n")
cat("\n", "Pairwise comparisons (p-values)", "\n", "\n")
# cat("\n", "For details see, http://www.med.osaka-u.ac.jp/pub/kid/clinicaljournalclub1.html", "\n")
cat("=============================================================", "\n")
# Bonferroni
cat("\n",
"<< Bonferroni method >>", "\n")
bon <- pairwise.wilcox.test(dat[,2], dat[,1], p.adj="bonferroni", exact=F, correct = F)
print(bon)
cat("\n",
"--------------------------------------------------------", "\n")
cat("\n",
"<< Holm-Bonferroni method >>", "\n")
# Holm
holm <- pairwise.wilcox.test(dat[,2], dat[,1], p.adj="holm", exact=F, correct = F)
print(holm)
cat("\n",
"--------------------------------------------------------", "\n")
cat("\n",
"<< False Discovery Rate >>", "\n")
# false discovery rate
fdr <- pairwise.wilcox.test(dat[,2], dat[,1], p.adj="fdr", exact=F, correct = F)
print(fdr)
cat("\n",
"--------------------------------------------------------", "\n")
})
output$KW.test.out <- renderPrint({
KW.test()
})
# Info
KW.info <- reactive({
info1 <- paste("This analysis was conducted with ", strsplit(R.version$version.string, " \\(")[[1]][1], ".", sep = "")
info2 <- paste("It was executed on ", date(), ".", sep = "")
cat(sprintf(info1), "\n")
cat(sprintf(info2), "\n")
})
output$KW.info.out <- renderPrint({
KW.info()
})
#-----------------------------------------------------------------
# Friedman test (Differences between several related groups)
#-----------------------------------------------------------------
# For two treatments (k = 2), Friedman test is equivalent to the sign test (not "signed" rank test).
# Wilcoxon signed-rank test is better for k = 2 design.
# Basic statistics
Friedman.bs <- reactive({
dat <- read.csv(text=input$text4, sep="", na.strings=c("","NA","."))
describe(dat)
})
output$Friedman.bs.out <- renderPrint({
Friedman.bs()
})
# Rank
Friedman.ranking <- reactive({
dat <- read.csv(text=input$text4, sep="", na.strings=c("","NA","."))
dtf <- data.frame()
for (i in 1:nrow(dat)){
dtf <- rbind(dtf, rank(dat[i,]))
}
colnames(dtf) <- colnames(dat)
Rank.Mean <- round(apply(dtf[,1:ncol(dtf)], 2, mean),2)
print(Rank.Mean)
})
output$Friedman.ranking.out <- renderPrint({
Friedman.ranking()
})
# Box plot
Friedman.boxPlot <- function(){
dat <- read.csv(text=input$text4, sep="", na.strings=c("","NA","."))
boxplot(dat, las=1)
beeswarm(dat, col = 4, pch = 16, vert = TRUE, add = TRUE)
}
output$Friedman.boxPlot <- renderPlot({
print(Friedman.boxPlot())
})
# Friedman test
Friedman.test <- reactive({
dat <- read.csv(text=input$text4, sep="", na.strings=c("","NA","."))
result <-friedman.test(as.matrix(dat))
print(result)
z <- qnorm(1 - (result$p.value/2)) # p to z
esR <- abs(z)/sqrt(nrow(dat)) # z to r
# 95%CI of r
esR.CI <- r.con(esR, nrow(dat), p =.95, twotailed=TRUE)
cat("Effect size r [95% CI] =", round(esR, 3), "[", round(esR.CI, 3), "]", "\n")
cat(" *Converted from p-value (p -> z -> r)", "\n", "\n", "\n")
#eta2 <- result$statistic[[1]]/((length(dat[,1])*(length(dat[1,])-1)))
#names(eta2) <- NULL
#cat("Effect size (eta-squared) =", sprintf("%.3f",round(eta2,4)), "\n", "\n")
# pair-wise comparisons
cat("=============================================================", "\n")
cat("\n", "Pairwise comparisons (Test statistics and effect sizes)", "\n", "\n")
cat("=============================================================", "\n", "\n")
pairWiseW <- function(x) {
colnames(x) <- c(1:length(x))
a <- as.numeric(colnames(x))
for (i in 1:length(a)) {
for (j in 1:length(a)) {
if (i >= j) {
next
} else {
res <- wilcox.test(x[,i], x[,j], paired=TRUE, correct=FALSE)
pval <- res$p.value
z <- qnorm(1-(pval/2))
r1 <- z/sqrt(length(x[,i])*2)
esR.CI1 <- r.con(r1, length(x[,i]*2), p =.95, twotailed=TRUE)
#r2 <- z/sqrt(length(x[,1])-sum((x[,2]-x[,1])==0))
cat("Comparisons", a[i], "-", a[j], ":", "\n",
"V =", res[[1]][1],"\n",
"z-value =",sprintf("%.3f",round(z,4)), "\n",
#"p-value =",sprintf("%.3f",round(pval,4)), "\n",
"Effect size r [95% CI] =", round(r1, 3), "[", round(esR.CI1, 3), "]", "\n",
#"Effect eize r (without considering ties) =", round(r2, 3), "\n",
"\n")
}
}
}
}
pairWiseW(dat)
cat("\n")
cat("=============================================================", "\n")
cat("\n", "Pairwise comparisons (p-values)", "\n", "\n")
#cat("\n", "For details see, http://www.med.osaka-u.ac.jp/pub/kid/clinicaljournalclub1.html", "\n")
cat("=============================================================", "\n")
x <- stack(dat)
x1 <- x[,1]
x2 <- x[,2]
# Bonferroni
cat("\n",
"<< Bonferroni method >>", "\n")
bon <- pairwise.wilcox.test(x1, x2, p.adj="bonferroni", exact=F, paired=T, correct = F)
print(bon)
cat("\n",
"--------------------------------------------------------", "\n")
cat("\n",
"<< Holm-Bonferroni method >>", "\n")
# Holm
holm <- pairwise.wilcox.test(x1, x2, p.adj="holm", exact=F, paired=T, correct = F)
print(holm)
cat("\n",
"--------------------------------------------------------", "\n")
cat("\n",
"<< False Discovery Rate >>", "\n")
# false discovery rate
fdr <- pairwise.wilcox.test(x1, x2, p.adj="fdr", exact=F, paired=T, correct = F)
print(fdr)
cat("\n",
"--------------------------------------------------------", "\n", "\n")
})
output$Friedman.test.out <- renderPrint({
Friedman.test()
})
# Info
Friedman.info <- reactive({
info1 <- paste("This analysis was conducted with ", strsplit(R.version$version.string, " \\(")[[1]][1], ".", sep = "")
info2 <- paste("It was executed on ", date(), ".", sep = "")
cat(sprintf(info1), "\n")
cat(sprintf(info2), "\n")
})
output$Friedman.info.out <- renderPrint({
Friedman.info()
})
})
library(shiny)
library(shinyAce)
shinyUI(bootstrapPage(
headerPanel("Non-parametric Tests"),
########## loading message #######################################
tags$head(tags$style(type="text/css", "
#loadmessage {
position: fixed;
top: 0px;
left: 0px;
width: 100%;
padding: 10px 0px 10px 0px;
text-align: center;
font-weight: bold;
font-size: 100%;
color: #000000;
background-color: #CCFF66;
z-index: 105;
}
")),
conditionalPanel(condition="$('html').hasClass('shiny-busy')",
tags$div("Loading...",id="loadmessage")),
###################################################################
mainPanel(
tabsetPanel(position = "left",
# Mann-Whitney U-test (Comparing two independent conditions)
tabPanel("Mann-Whitney U-test",
h2("Mann-Whitney U-test"),
h4("Comparing two independent conditions"),
p('Note: Input values must be separated by tabs. Copy and paste from Excel/Numbers.'),
p(HTML("<b><div style='background-color:#FADDF2;border:1px solid black;'>Your data needs to have the header (variable names) in the first row.</div></b>")),
aceEditor("text1", value="Class\tScore\n1\t78\n1\t70\n1\t73\n1\t86\n1\t65\n1\t74\n1\t59\n1\t78\n1\t86\n1\t56\n1\t4\n1\t66\n1\t100\n1\t53\n1\t57\n2\t42\n2\t3\n2\t51\n2\t21\n2\t45\n2\t100\n2\t39\n2\t57\n2\t32\n2\t46\n2\t26\n2\t54\n2\t28\n2\t42\n2\t30", mode="r", theme="cobalt"),
br(),
h3("Basic statistics"),
verbatimTextOutput("MWU.bs.out"),
br(),
h3("Ranks"),
verbatimTextOutput("MWU.ranking.out"),
br(),
h3("Box plots with individual data points"),
plotOutput("MWU.boxPlot", width="80%"),
h3("Test result"),
verbatimTextOutput("MWU.test.out"),
br(),
br(),
strong('R session info'),
verbatimTextOutput("MWU.info.out")
),
# Wilcoxon signed-rank test (Comparing two related conditions)
tabPanel("Wilcoxon signed-rank test",
h2("Wilcoxon signed-rank test"),
h4("Comparing two related conditions"),
p('Note: Input values must be separated by tabs. Copy and paste from Excel/Numbers.'),
p(HTML("<b><div style='background-color:#FADDF2;border:1px solid black;'>Your data needs to have the header (variable names) in the first row.</div></b>")),
aceEditor("text2", value="First\tSecond\n78\t42\n6\t3\n73\t51\n86\t21\n45\t45\n74\t98\n59\t59\n78\t57\n86\t84\n56\t46\n4\t26\n66\t54\n100\t28\n53\t42\n57\t30", mode="r", theme="cobalt"),
br(),
h3("Basic statistics"),
verbatimTextOutput("WSR.bs.out"),
br(),
h3("Ranks"),
verbatimTextOutput("WSR.ranking.out"),
br(),
h3("Box plots with individual data points"),
plotOutput("WSR.boxPlot", width="80%"),
h3("Test result"),
verbatimTextOutput("WSR.test.out"),
br(),
br(),
strong('R session info'),
verbatimTextOutput("WSR.info.out")
),
# Kruskal-Wallis test (Differences between several independent groups)
tabPanel("Kruskal-Wallis test",
h2("Kruskal-Wallis test"),
h4("Differences between several independent groups"),
p('Note: Input values must be separated by tabs. Copy and paste from Excel/Numbers.'),
p(HTML("<b><div style='background-color:#FADDF2;border:1px solid black;'>Your data needs to have the header (variable names) in the first row.</div></b>")),
aceEditor("text3", value="Class\tScore\n1\t78\n1\t70\n1\t73\n1\t86\n1\t65\n1\t74\n1\t59\n1\t78\n1\t86\n1\t56\n1\t4\n1\t66\n1\t100\n1\t53\n1\t57\n2\t42\n2\t3\n2\t51\n2\t21\n2\t45\n2\t100\n2\t39\n2\t57\n2\t32\n2\t46\n2\t26\n2\t54\n2\t28\n2\t42\n2\t30\n3\t2\n3\t42\n3\t86\n3\t85\n3\t53\n3\t90\n3\t1\n3\t69\n3\t53\n3\t74\n3\t80\n3\t66\n3\t100\n3\t70\n3\t37",mode="r", theme="cobalt"),
br(),
h3("Basic statistics"),
verbatimTextOutput("KW.bs.out"),
br(),
h3("Ranks"),
verbatimTextOutput("KW.ranking.out"),
br(),
h3("Box plots with individual data points"),
plotOutput("KW.boxPlot", width="80%"),
h3("Test result"),
verbatimTextOutput("KW.test.out"),
br(),
br(),
strong('R session info'),
verbatimTextOutput("KW.info.out")
),
# Friedman test (Differences between several related groups)
tabPanel("Friedman test",
h2("Friedman test"),
h4("Differences between several related groups"),
p('Note: Input values must be separated by tabs. Copy and paste from Excel/Numbers.'),
p(HTML("<b><div style='background-color:#FADDF2;border:1px solid black;'>Your data needs to have the header (variable names) in the first row.</div></b>")),
aceEditor("text4", value="First\tSecond\tThird\n78\t42\t42\n6\t3\t6\n73\t51\t86\n86\t21\t85\n45\t45\t53\n74\t98\t90\n59\t59\t1\n78\t57\t69\n86\t84\t53\n56\t46\t74\n4\t26\t80\n66\t54\t66\n100\t28\t100\n53\t42\t70\n57\t30\t37", mode="r", theme="cobalt"),
br(),
h3("Basic statistics"),
verbatimTextOutput("Friedman.bs.out"),
br(),
h3("Ranks"),
verbatimTextOutput("Friedman.ranking.out"),
br(),
h3("Box plots with individual data points"),
plotOutput("Friedman.boxPlot", width="80%"),
h3("Test result"),
verbatimTextOutput("Friedman.test.out"),
br(),
br(),
strong('R session info'),
verbatimTextOutput("Friedman.info.out")
),
# About
tabPanel("About",
strong('Note'),
p('This web application is developed with',
a("Shiny.", href="http://www.rstudio.com/shiny/", target="_blank"),
''),
br(),
strong('List of Packages Used'), br(),
code('library(shiny)'),br(),
code('library(shinyAce)'),br(),
code('library(psych)'),br(),
code('library(beeswarm)'),br(),
br(),
strong('Code'),
p('Source code for this application is based on',
a('"The handbook of Research in Foreign Language Learning and Teaching" (Takeuchi & Mizumoto, 2012).', href='http://mizumot.com/handbook/', target="_blank")),
p('The code for this web application is available at',
a('GitHub.', href='https://github.com/mizumot/npt', target="_blank")),
p('If you want to run this code on your computer (in a local R session), run the code below:',
br(),
code('library(shiny)'),br(),
code('runGitHub("npt","mizumot")')
),
br(),
strong('Citation in Publications'),
p('Mizumoto, A. (2015). Langtest (Version 1.0) [Web application]. Retrieved from http://langtest.jp'),
br(),
strong('Article'),
p('Mizumoto, A., & Plonsky, L. (2015).', a("R as a lingua franca: Advantages of using R for quantitative research in applied linguistics.", href='http://applij.oxfordjournals.org/content/early/2015/06/24/applin.amv025.abstract', target="_blank"), em('Applied Linguistics,'), 'Advance online publication. doi:10.1093/applin/amv025'),
br(),
strong('Recommended'),
p('To learn more about R, I suggest this excellent and free e-book (pdf),',
a("A Guide to Doing Statistics in Second Language Research Using R,", href="http://cw.routledge.com/textbooks/9780805861853/guide-to-R.asp", target="_blank"),
'written by Dr. Jenifer Larson-Hall.'),
p('Also, if you are a cool Mac user and want to use R with GUI,',
a("MacR", href="https://sites.google.com/site/casualmacr/home", target="_blank"),
'is defenitely the way to go!'),
br(),
strong('Author'),
p(a("Atsushi MIZUMOTO,", href="http://mizumot.com", target="_blank"),' Ph.D.',br(),
'Professor of Applied Linguistics',br(),
'Faculty of Foreign Language Studies /',br(),
'Graduate School of Foreign Language Education and Research,',br(),
'Kansai University, Osaka, Japan'),
br(),
a(img(src="http://i.creativecommons.org/p/mark/1.0/80x15.png"), target="_blank", href="http://creativecommons.org/publicdomain/mark/1.0/"),
p(br())
)
)
)
))