Effect Size Calculator 1

Group 1:


Group 2:


Option:

Checking the input data


Mean of the differences and 95% CI


                    

t-test


                    


                    

Effect size indices


                    
Note

This web application is developed with Shiny.


Code

Source code for this application is based on "The handbook of Research in Foreign Language Learning and Teaching" (Takeuchi & Mizumoto, 2012).

The code for this web application is available at GitHub.

If you want to run this code on your computer (in a local R session), run the code below:
library(shiny)
runGitHub("mes","mizumot")


Citation in Publications

Mizumoto, A. (2015). Langtest (Version 1.0) [Web application]. Retrieved from http://langtest.jp


Article

Mizumoto, A., & Plonsky, L. (2015). R as a lingua franca: Advantages of using R for quantitative research in applied linguistics. Applied Linguistics, Advance online publication. doi:10.1093/applin/amv025


Recommended

To learn more about R, I suggest this excellent and free e-book (pdf), A Guide to Doing Statistics in Second Language Research Using R, written by Dr. Jenifer Larson-Hall.

Also, if you are a cool Mac user and want to use R with GUI, MacR is defenitely the way to go!


Author

Atsushi MIZUMOTO, Ph.D.
Professor of Applied Linguistics
Faculty of Foreign Language Studies /
Graduate School of Foreign Language Education and Research,
Kansai University, Osaka, Japan


Code for "Effect Size Calculator 1"
by Atsushi Mizumoto

show with app
library(shiny)
library(compute.es)


shinyServer(function(input, output) {
    
    options(warn=-1)
    
    sliderValues <- reactive ({
        n1 <- as.integer(input$nx)
        n2 <- as.integer(input$ny)
        
        data.frame(
            n = c(n1, n2),
            Mean = c(input$mx, input$my),
            SD = c(input$sdx, input$sdy),
            stringsAsFactors=FALSE)
    })
    
    difference <- reactive({
            nx <- input$nx
            mx <- input$mx
            sdx <- input$sdx
            ny <- input$ny
            my <- input$my
            sdy <- input$sdy
            
            if (input$varequal) {
                df <- nx+ny-2
                v <- ((nx-1)*sdx^2+(ny-1)*sdy^2)/df
                diff <- round((mx - my), 3)
                diff.std <- sqrt(v * (1/nx + 1/ny))
                diff.lower <- round(diff + diff.std * qt(0.05/2, df),3)
                diff.upper <- round(diff + diff.std * qt(0.05/2, df, lower.tail = FALSE),3)
            } else {
                stderrx <- sqrt(sdx^2/nx)
                stderry <- sqrt(sdy^2/ny)
                stderr <- sqrt(stderrx^2 + stderry^2)
                df <- round(stderr^4/(stderrx^4/(nx - 1) + stderry^4/(ny - 1)),3)
                tstat <- round(abs(mx - my)/stderr,3)
                diff <- round((mx - my), 3)
                cint <- qt(1 - 0.05/2, df)
                diff.lower <- round(((tstat - cint) * stderr),3)
                diff.upper <- round(((tstat + cint) * stderr),3)
            }
            
            cat("Mean of the differences [95% CI] =", diff, "[", diff.lower,",", diff.upper,"]", "\n")
    })


    es <- reactive({
        nx <- input$nx
        mx <- input$mx
        sdx <- input$sdx
        ny <- input$ny
        my <- input$my
        sdy <- input$sdy
    
        mes(mx, my, sdx, sdy, nx, ny)
    })
    
    
    ttest <- reactive({
        nx <- input$nx
        mx <- input$mx
        sdx <- input$sdx
        ny <- input$ny
        my <- input$my
        sdy <- input$sdy
        
     if (input$varequal) {
        df1 <- input$nx+input$ny-2
        v1 <- ((input$nx-1)*input$sdx^2+(input$ny-1)*input$sdy^2)/df1
        tstat1 <- round(abs(input$mx-input$my)/sqrt(v1*(1/input$nx+1/input$ny)),3)
        diff <- round((input$mx - input$my), 3)
        P1 <- 2 * pt(-abs(tstat1), df1)
        
        cat("Independent t-test (equal variances assumed)", "\n",
        " t =", tstat1, ",", "df =", df1, ",", "p-value =", P1, "\n")
        
     } else {

        stderrx <- sqrt(input$sdx^2/input$nx)
        stderry <- sqrt(input$sdy^2/input$ny)
        stderr <- sqrt(stderrx^2 + stderry^2)
        df2 <- round(stderr^4/(stderrx^4/(input$nx - 1) + stderry^4/(input$ny - 1)),3)
        tstat2 <- round(abs(input$mx - input$my)/stderr,3)
        P2 <- 2 * pt(-abs(tstat2), df2)
        
        cat("Welch's t-test (equal variances not assumed)", "\n",
            " t =", tstat2, ",", "df =", df2, ",", "p-value =", P2, "\n")
     }
     })
    

    vartest <- reactive({
        if (input$vartest) {
            nx <- input$nx
            sdx <- input$sdx
            vx <- sdx^2
            ny <- input$ny
            sdy <- input$sdy
            vy <- sdy^2
            
            if (vx > vy) {
                f <- vx/vy
                df1 <- nx-1
                df2 <- ny-1
            } else {
                f <- vy/vx
                df1 <- ny-1
                df2 <- nx-1
            }
            
            p <- 2*pf(f, df1, df2, lower.tail=FALSE)
            dfs <- c("num df"=df1, "denom df"=df2)
            
            cat(" Test for equality of variances", "\n",
                "  F =", f, ",", "num df =", df1, ",", "denom df =", df2, "\n",
                "  p-value = ", p, "\n"
                )
        
        } else {
            cat("Test for equality of variances will be displayed if the option is selected.")
        }
    })
    



    # Show the values using an HTML table
    output$values <- renderTable({
    sliderValues()
    })

    # Show the final calculated value
    
    output$difference.out <- renderPrint({
        difference()
    })
    
    output$es.out <- renderPrint({
        es()
    })
    
    output$ttest.out <- renderPrint({
        ttest()
    })

    output$vartest.out <- renderPrint({
        vartest()
    })

})
library(shiny)

# Define UI for dataset viewer application
shinyUI(pageWithSidebar(

  # Application title
 headerPanel("Effect Size Calculator 1"),


  # Sidebar
 sidebarPanel(

  p(strong("Group 1:")),

    numericInput("nx", " Sample size (n)", 21),

    numericInput("mx", " Mean", 61.33),

    numericInput("sdx", " SD", 16.43),

  p(br()),

  p(strong("Group 2:")),

    numericInput("ny", " Sample size (n)", 24),

    numericInput("my", " Mean", 59.79),

    numericInput("sdy", " SD", 18.50),

  p(br()),

  strong('Option:'),


  checkboxInput("varequal", "t-test with equal variances assumed", FALSE),


  checkboxInput("vartest", "Show test for equality of variances", FALSE)

    ),



mainPanel(
    tabsetPanel(

    tabPanel("Main",
        h3("Checking the input data"),
        tableOutput("values"),

        br(),

        h3("Mean of the differences and 95% CI"),
        verbatimTextOutput("difference.out"),

        br(),

        h3("t-test"),
        verbatimTextOutput("ttest.out"),
        h3(""),
        verbatimTextOutput("vartest.out"),

        br(),

        h3("Effect size indices"),
        verbatimTextOutput("es.out"),

        br()

        ),

    tabPanel("About",

    strong('Note'),
    p('This web application is developed with',
    a("Shiny.", href="http://www.rstudio.com/shiny/", target="_blank"),
    ''),

    br(),


    strong('Code'),
    p('Source code for this application is based on',
    a('"The handbook of Research in Foreign Language Learning and Teaching" (Takeuchi & Mizumoto, 2012).', href='http://mizumot.com/handbook/', target="_blank")),

    p('The code for this web application is available at',
    a('GitHub.', href='https://github.com/mizumot/mes', target="_blank")),

    p('If you want to run this code on your computer (in a local R session), run the code below:',
    br(),
    code('library(shiny)'),br(),
    code('runGitHub("mes","mizumot")')
    ),

    br(),

    strong('Citation in Publications'),
    p('Mizumoto, A. (2015). Langtest (Version 1.0) [Web application]. Retrieved from http://langtest.jp'),

    br(),

    strong('Article'),
    p('Mizumoto, A., & Plonsky, L. (2015).', a("R as a lingua franca: Advantages of using R for quantitative research in applied linguistics.", href='http://applij.oxfordjournals.org/content/early/2015/06/24/applin.amv025.abstract', target="_blank"), em('Applied Linguistics,'), 'Advance online publication. doi:10.1093/applin/amv025'),

    br(),

    strong('Recommended'),
    p('To learn more about R, I suggest this excellent and free e-book (pdf),',
    a("A Guide to Doing Statistics in Second Language Research Using R,", href="http://cw.routledge.com/textbooks/9780805861853/guide-to-R.asp", target="_blank"),
    'written by Dr. Jenifer Larson-Hall.'),

    p('Also, if you are a cool Mac user and want to use R with GUI,',
    a("MacR", href="http://www.urano-ken.com/blog/2013/02/25/installing-and-using-macr/", target="_blank"),
    'is defenitely the way to go!'),

    br(),

    strong('Author'),
    p(a("Atsushi MIZUMOTO,", href="http://mizumot.com", target="_blank"),' Ph.D.',br(),
    'Professor of Applied Linguistics',br(),
    'Faculty of Foreign Language Studies /',br(),
    'Graduate School of Foreign Language Education and Research,',br(),
    'Kansai University, Osaka, Japan'),

    br(),

    a(img(src="http://i.creativecommons.org/p/mark/1.0/80x15.png"), target="_blank", href="http://creativecommons.org/publicdomain/mark/1.0/")
)
)
)
))
Code license: GPL-3